Convergence of partially asynchronous block quasi-Newton methods for nonlinear systems of equations
نویسنده
چکیده
In this paper, a partially asynchronous block Broyden method is presented for solving nonlinear systems of equations of the form F(x)= 0. Sufficient conditions that guarantee its local convergence are given. In particular, local convergence is shown when the Jacobian F'(x*) is an H-matrix, where x* is the zero point o f F . The results are extended to Schubert's method. A connection with discrete Schwarz alternating procedure is also shown. (~) 1999 Elsevier Science B.V. All rights reserved.
منابع مشابه
On the Convergence of Asynchronous Block Newton Methods for Nonlinear Systems of Equations
Convergence of asynchronous block Newton methods for solving nonlinear systems of equations of the form F (x) = 0 are studied. Sufficient conditions to guarantee their local convergence are given. Our analysis emphasizes the connection between the conditions on F involved in local convergence theorems for sequential and synchronous block Newton’s method, and our settings for asynchronous block ...
متن کاملInexact Block Quasi - Newton Methods for Sparsesystems of Nonlinear Equations
In this paper we present the results obtained in solving consistent sparse systems of n nonlinear equations F(x) = 0; by a Quasi-Newton method combined with a p block iterative row-projection linear solver of Cimmino-type, 1 p n: Under weak regularity conditions for F; it is proved that this Inexact Quasi-Newton method has a local, linear convergence in the energy norm induced by the preconditi...
متن کاملOn the convergence of quasi-Newton methods for nonsmooth problems
We develop a theory of quasi-Newton and least-change update methods for solving systems of nonlinear equations F (x) = 0. In this theory, no diierentiability conditions are necessary. Instead, we assume that F can be approximated, in a weak sense, by an aane function in a neighborhood of a solution. Using this assumption, we prove local and ideal convergence. Our theory can be applied to B-diie...
متن کاملSolving systems of nonlinear equations using decomposition technique
A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...
متن کاملInexact Quasi-Newton methods for sparse systems of nonlinear equations
In this paper we present the results obtained in solving consistent sparse systems of n nonlinear equations F (x) = 0; by a Quasi-Newton method combined with a p block iterative row-projection linear solver of Cimmino-type, 1 p n: Under weak regularity conditions for F; it is proved that this Inexact Quasi-Newton method has a local, linear convergence in the energy norm induced by the precondit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999